CA Building Products Twin-Therm® roof incorporating CA 17 1000L liner (0.23W/m²K U-value)

Environmental Product Declaration

Owner of the Declaration: CA Group Ltd, County Durham, DL14 9SF
Programme Operator: Tata Steel UK Limited, 30 Millbank, London, SW1P 4WY
CA Building Products Twin-Therm® roof incorporating CA 17 1000L liner (0.23W/m²K U-value)
Environmental Product Declaration
(in accordance with ISO 14025 and EN 15804)

This EPD is representative and valid for the specified (named) product

Declaration Number: EPD-TS-2018-004
Date of Issue: 1st August 2018
Valid until: 31st July 2023

Owner of the Declaration: CA Group Ltd, County Durham, DL14 9SF
Programme Operator: Tata Steel UK Limited, 30 Millbank, London, SW1P 4WY

The CEN standard EN 15804:2012+A1:2013 serves as the core Product Category Rules (PCR) supported by Tata Steel’s EN 15804 verified EPD PCR documents

Independent verification of the declaration and data, according to ISO 14025

Internal □ External ☑

Author of the Life Cycle Assessment: Tata Steel UK
Third party verifier: Olivier Muller, PricewaterhouseCoopers, Paris
1 General information

<table>
<thead>
<tr>
<th>Owner of EPD</th>
<th>CA Group Ltd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product & module</td>
<td>Twin-Therm® roof incorporating CA 17 1000L liner (0.23W/m²K U-value)</td>
</tr>
<tr>
<td>U-Value</td>
<td>0.23W/m²K</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Tata Steel Europe & CA Building Products</td>
</tr>
<tr>
<td>Manufacturing sites</td>
<td>Port Talbot, Llanwern, Shotton and Evenwood</td>
</tr>
<tr>
<td>Product applications</td>
<td>Construction and infrastructure</td>
</tr>
<tr>
<td>Declared unit</td>
<td>1m² of steel cladding system</td>
</tr>
<tr>
<td>Date of issue</td>
<td>1st August 2018</td>
</tr>
<tr>
<td>Valid until</td>
<td>31st July 2023</td>
</tr>
</tbody>
</table>

This Environmental Product Declaration (EPD) is for Twin-Therm® roof incorporating CA 17 1000L liner (0.23W/m²K U-value) built-up roof cladding manufactured by CA Building Products in the UK, using Colorcoat HPS200 Ultra® or Colorcoat Prisma® pre-finished steel and glass wool insulation. The environmental indicators are for products manufactured at CA Building Products in Evenwood with feedstock supplied from Shotton.

The information in the Environmental Product Declaration is based on production data from 2013 and 2016.

EN 15804 serves as the core PCR, supported by Tata Steel’s EN 15804 verified EPD programme Product Category Rules documents, and this declaration has been independently verified according to ISO 14025 [1,2,3,4,5,6,7].

Third party verifier

Olivier Muller, PwC Stratégie - Développement Durable, PricewaterhouseCoopers Advisory, 63, rue de Villiers, 92208 Neuilly-sur-Seine, France
2 Product Information

2.1 Product Description

Twin-Therm® roof is a site assembled cladding system that once installed is fully walkable and provides a tested non-fragile assembly. It comprises a Colorcoat® pre-finished steel liner, Therma-quilt non-hygroscopic glass wool insulation and a Colorcoat® pre-finished steel external weathering profile. The system’s design and installation method allows for a continuous run of insulation, minimizing thermal bridging. The fire performance of Therma-quilt is Euroclass ‘A1’ non-combustible to BS EN 13501-1. The Twin-Therm® roof system is approved by the Loss Prevention Certification Board (LPCB) and has been tested to LPS 1181 and attained ‘EXT-B’ status.

- Designed for roof pitches greater than 2.5° after steelwork deflection at end laps
- Minimum self-curve radii of 45m and mechanically cramped curves as low as 300mm
- Fully walkable and non-fragile
- No fixings penetrating through the entire build up from outside to in
- Standard U-values as low as 0.14W/m²K
- In plane rooflights with U-values as low as 0.90 - 1.70W/m²K
- Euroclass ‘A1’ non-combustible Therma-quilt insulation
- LPCB tested to LPS 1181 and attains ‘EXT-B’ status

2.2 Manufacturing

The manufacturing sites included in the EPD are listed in Table 1 below.

Table 1 Participating sites

<table>
<thead>
<tr>
<th>Site name</th>
<th>Product</th>
<th>Manufacturer</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Talbot</td>
<td>Hot rolled coil</td>
<td>Tata Steel</td>
<td>UK</td>
</tr>
<tr>
<td>Llanwern</td>
<td>Cold rolled coil</td>
<td>Tata Steel</td>
<td>UK</td>
</tr>
<tr>
<td>Shotton</td>
<td>Hot dip galvanised coil</td>
<td>Tata Steel</td>
<td>UK</td>
</tr>
<tr>
<td>Shotton</td>
<td>Pre-finished steel</td>
<td>Tata Steel</td>
<td>UK</td>
</tr>
<tr>
<td>Evenwood</td>
<td>Insulated cladding system</td>
<td>CA Building Products</td>
<td>UK</td>
</tr>
</tbody>
</table>

The process of steel coil manufacture at Tata Steel begins with sinter being produced from iron ore and limestone, and together with coke from coal, reduced in a blast furnace to produce iron. Steel scrap is then added to the liquid iron and oxygen is blown through the mixture to convert it into liquid steel in the basic oxygen furnace. The liquid steel is continuously cast into discrete slabs, which are subsequently reheated and rolled in a hot strip mill to produce steel coil. The hot rolled coils are transported by rail, from Port Talbot to Llanwern where they are pickled and cold rolled. Following, cold rolling the coil is then transported by train to Shotton where the strip is galvanised and coated.

Pre-finished steel comprises a number of paint layers and treatments which are applied to the steel in an automated and carefully controlled process with each layer of the product having a particular function. It is the combined effect of all these layers that give the product its overall performance and ensures a material that is robust and offers the specifier a choice of colour and effect. During the organic coating process for Colorcoat HPS200 Ultra® and Colorcoat Prisma®, a Galvalloy® metallic coating is first applied to the steel coil. A pre-treatment is applied and then a primer before adding the final top coat layer in the form of liquid paint. For the vast majority of pre-finished steel products, the above topcoats are applied on the top surface only, while the reverse or back side of the strip is produced with a high performing backing coat. These are cured at elevated temperatures before being recoiled prior to use in the manufacture of the cladding system.

The pre-finished steel coils are profiled on a roll forming machine using sets of rolls mounted in a number of sequential stands. Each profiled coil is cut into suitable lengths to produce the liner and outer sheets. Steel spacer brackets and rails are formed to provide a means of attaching the outer sheet profile to the structure. They also determine the thickness of the cavity between the liner and outer profiles, between which non-hygroscopic glass wool thermal insulation is inserted during installation of the system on the building. An overview of the process from raw materials to transport of the cladding system to the construction site, is shown in Figure 1.
Figure 1 Process overview from raw materials to cladding product

Raw materials:
- Iron ore
- Limestone
- Coal
- Scrap metal
- Sand/dolomite
- Recycled glass

Materials preparation:
- Sinter plant
- Coke ovens
- Blast furnace

Ironmaking:
- BOF & Caster
- Hot strip mill

Steelmaking & casting:
- Hot Dip Galvanising
- Organic coating

Hot rolling:
- Transport of hot rolled coil
- Acid pickling
- Cold rolling

Transport of cold rolled coil:
- Train

Transport of coated coil:
- Truck

Steel profiling & cutting:
- Transport of profiles to site

Transport of profiles to site:
- Truck

Insulation manufacture:
- Insulation manufacture

Insulation manufacture:
- Glass wool plant

Transport of insulation to site:
- Truck
Process data for the manufacture of hot and cold rolled coil at Port Talbot and Llanwern was gathered as part of the latest worldsteel data collection. For Port Talbot and Llanwern, and Colorcoat® manufacture at Shotton, the data collection was not only organised by site, but also by each process line within the site. In this way it was possible to attribute resource use and emissions to each process line, and using processed tonnage data for that line, also attribute resources and emissions to specific products. For the manufacture of the cladding system, process data was also collected from the manufacturing line on the CA Group site at Evenwood.

2.3 Technical data and specifications

The general properties of the product are shown in Table 2, and the technical specifications of the product are presented in Table 3.

2.4 Packaging

The profiled sheets are packaged using responsibly sourced timber and secured with plastic or steel strapping. The outer sheets in each pack are protected by scrap steel sheets from the coil ends, prior to their transportation to the construction site.

2.5 Reference service life

Steel faced cladding systems have a design life dependant on a number of factors including the building use, location, weather conditions and the specification of the pre-finished steel product.

Products specified with Colorcoat HPS200 Ultra® are designed to withstand even the most demanding and aggressive environments and are used in a wide range of industrial and commercial buildings, providing super-durability and corrosion resistance.

Three layer Colorcoat Prisma® not only uniquely pushes the boundaries for UV performance but also outperforms the highest European corrosion resistance standards and makes it ideal for commercial, retail, warehouse, public sector and superior aesthetic buildings which are built to last.

Tata Steel offer a Confidex® Guarantee directly to the industrial/commercial building owner for the weather side of both of these pre-finished steel products. Confidex® offers the longest and most comprehensive guarantee for pre-finished steel available in Europe. Colorcoat Prisma® and Colorcoat HPS200 Ultra® are guaranteed for up to 40 years. The exact length of the guarantee is project specific and depends upon the building location, use and colour. Appropriate inspection and maintenance can significantly extend the functional life of the cladding beyond this period. Further details of the Confidex® Guarantee are available at www.colorcoat-online.com

Table 2 General characteristics and specification of the cladding

<table>
<thead>
<tr>
<th>Twin-Therm® roof incorporating CA 17 1000L liner (U-value: 0.23W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness of the outer sheet (mm)</td>
</tr>
<tr>
<td>Thickness of the liner sheet (mm)</td>
</tr>
<tr>
<td>Core thickness of insulation (mm)</td>
</tr>
<tr>
<td>Cover width (mm)</td>
</tr>
<tr>
<td>U-value (W/m²K)</td>
</tr>
<tr>
<td>System weight (kg/m²)</td>
</tr>
</tbody>
</table>

CE marking

- Profiled sheets to EN 14782
- Insulation to EN 13162
- Spacer system to ETA 17/0456

Certification

- Certifications applicable to CA Group Evenwood site are:
 - ISO 9001
 - ISO 14001
 - LPCB LPS 1181 Ext-B
 - Kiwa BDA Agrément certification

Table 3 Technical specification of Colorcoat®

<table>
<thead>
<tr>
<th>Colorcoat® pre-finished steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metallic coating</td>
</tr>
</tbody>
</table>

| Paint coating (organic) | Colorcoat HPS200 Ultra® or three layer Colorcoat Prisma® external face Colorcoat® PE15 or Colorcoat® High Reflect internal face All pre-finished steel products are fully REACH compliant and chrome free |

| Certification | Certifications applicable to Tata Steel's Shotton site are:
 - ISO 9001
 - ISO 14001
 - OH&SAS 18001
 - BES 6001 certification
 - BBA certification (Colorcoat®)
 - RCS, Ruv4, CPS certificates in accordance with EN 10169 |

3 LCA methodology

3.1 Declared unit
The unit being declared is 1 m² of cladding system and the cladding composition is detailed in Table 4.

3.2 Scope
This EPD can be regarded as Cradle-to-Gate (with options) and the modules considered in the LCA are:

A1-3: Production stage (Raw material supply, transport to production site, manufacturing)
A4 & A5: Production stage (Transport to the construction site and installation)
B1-5: Use stage (related to the building fabric including maintenance, repair, replacement)
C1-4: End-of-life (Deconstruction, transport, processing for recycling & reuse and disposal)
D: Reuse, recycling and recovery

The life cycle stages are explained in more detail in Figure 2.

Table 4 Material composition of cladding system per declared unit

<table>
<thead>
<tr>
<th>Material declaration</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declared unit (m²)</td>
<td>1</td>
</tr>
<tr>
<td>Insulation (kg)</td>
<td>1.89</td>
</tr>
<tr>
<td>Steel (kg)</td>
<td>10.25</td>
</tr>
<tr>
<td>Fixings & brackets (kg)</td>
<td>1.23</td>
</tr>
</tbody>
</table>

Figure 2 Life Cycle Assessment of steel cladding system
3.3 Cut-off criteria
All information from the data collection process has been considered, covering all used and registered materials, and all fuel and energy consumption. On-site emissions were measured and those emissions have been considered. Data for all relevant sites were thoroughly checked and also cross-checked with one another to identify potential data gaps. No processes, materials or emissions that are known to make a significant contribution to the environmental impact of the insulated cladding system have been omitted. On this basis, there is no evidence to suggest that inputs or outputs contributing more than 1% to the overall mass or energy of the system, or that are environmentally significant, have been omitted. It is estimated that the sum of any excluded flows contribute less than 5% to the impact assessment categories. The manufacturing of required machinery and other infrastructure is not considered in the LCA.

3.4 Background data
For life cycle modelling of the panel system, the GaBi Software System for Life Cycle Engineering is used [22]. The GaBi database contains consistent and documented datasets which can be viewed in the online GaBi documentation [23].

Where possible, specific data derived from the production processes of Tata Steel and CA Building Products were the first choice to use where available. Data was also obtained directly from the relevant suppliers, such as the paint which is used in the coating process.

To ensure comparability of results in the LCA, the basic data of the GaBi database were used for energy, transportation and auxiliary materials.

3.5 Data quality
The data from the production processes of Tata Steel and CA Building Products are from 2013 and 2016, and the technologies on which these processes were based during that period, are those used at the date of publication of this EPD. All relevant background datasets are taken from the GaBi software database, and the last revision of all but three of these data sets took place less than 10 years ago. However, the contribution to impacts of these three datasets is small and relatively insignificant, and therefore, the study is considered to be based on high quality data.

3.6 Allocation
To align with the requirements of EN 15804, a methodology is applied to assign impacts to the production of slag and hot metal from the blast furnace (co-products from steel manufacture), that was developed by the World Steel Association and EUROFER [24]. This methodology is based on physical and chemical partitioning of the manufacturing process, and therefore avoids the need to use allocation methods, which are based on relationships such as mass or economic value. It takes account of the manner in which changes in inputs and outputs affect the production of co-products and also takes account of material flows that carry specific inherent properties. This method is deemed to provide the most representative method to account for the production of blast furnace slag as a co-product.

Economic allocation was considered, as slag is designated as a low value co-product under EN 15804. However, as neither hot metal nor slag are tradable products upon leaving the blast furnace, economic allocation would most likely be based on estimates. Similarly
3.7 Additional technical information
The main scenario assumptions used in the LCA are detailed in Table 5. The end-of-life percentages are based upon a Tata Steel/EUROFER recycling and reuse survey of UK demolition contractors carried out in 2014 [26].

The environmental impacts presented in the ‘LCA Results’ section (4) are expressed with the impact category parameters of Life Cycle Impact Assessment (LCIA) using characterisation factors. The LCIA method used is CML 2001-April 2013 [27].

3.8 Comparability
Care must be taken when comparing EPDs from different sources. EPDs may not be comparable if they do not have the same functional unit or scope (for example, whether they include installation allowances in the building), or if they do not follow the same standard such as EN 15804. The use of different generic datasets for upstream or downstream processes that form part of the product system may also mean that EPDs are not comparable.

Comparisons should ideally be integrated into a whole building assessment, in order to capture any differences in other aspects of the building design that may result from specifying different products. For example, a more durable product would require less maintenance and reduce the number of replacements and associated impacts over the life of the building.

Table 5 Main scenario assumptions

<table>
<thead>
<tr>
<th>Module</th>
<th>Scenario assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 to A3 – Product stage</td>
<td>Manufacturing data from Tata Steel sites at Port Talbot, Llanwern and Shotton are used, as well as data from CA Group at Evenwood</td>
</tr>
<tr>
<td>A2 – Transport to the steel profiling site</td>
<td>The Colorcoat® manufacturing facility is located on the Shotton site. The steel coils are transported from here, 260km by road on a 25 tonne payload truck. A utilisation factor of 45% was assumed to account for empty returns</td>
</tr>
<tr>
<td>A4 – Transport to the construction site</td>
<td>A transport distance of 250km by road on a 25 tonne capacity truck, was considered representative of a typical installation. Utilisation factors of 30% (profiles) and 14% (insulation) were assumed to account for empty returns</td>
</tr>
<tr>
<td>A5 – Installation at construction site</td>
<td>This is based on data collected from 10 typical UK installations by a Tata Steel supply chain partner for the installation of cladding systems on site. The fixing screws are made from stainless steel</td>
</tr>
<tr>
<td>B1 to B5 – Use stage</td>
<td>This stage includes any maintenance or repair, replacement or refurbishment of the cladding over the life cycle. This is not required for the duration of the reference service life of the cladding</td>
</tr>
<tr>
<td>C1 – Deconstruction & demolition</td>
<td>Deconstruction is primarily removal of the cladding from the building and is also based upon supply chain partner data</td>
</tr>
<tr>
<td>C2 – Transport for recycling, reuse, and disposal</td>
<td>A transport distance of 100km to landfill or to a recycling site is assumed, while a distance of 250km is assumed for reuse. Transport is on a 25 tonne load capacity lorry with 20% utilisation to account for empty returns</td>
</tr>
<tr>
<td>C3 – Waste processing for reuse, recovery and/or recycling</td>
<td>The recycled cladding is processed in a shredder. There is no additional processing of material for reuse</td>
</tr>
<tr>
<td>C4 – Disposal</td>
<td>At end-of-life, 1% of the steel and 72% of the insulation is disposed in a landfill, based upon the findings of an NFDC survey</td>
</tr>
<tr>
<td>D – Reuse, recycling, energy recovery</td>
<td>At end-of-life, 89% of the steel is recycled and 10% of the steel profiles are reused, in accordance with the findings of an NFDC survey</td>
</tr>
</tbody>
</table>
4 Results of the LCA

Description of the system boundary

<table>
<thead>
<tr>
<th>Product stage</th>
<th>Construction stage</th>
<th>Use stage</th>
<th>End-of-life stage</th>
<th>Benefits and loads beyond the system boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw material supply</td>
<td>Transport</td>
<td>Manufacturing</td>
<td>Installation</td>
<td>Use</td>
</tr>
<tr>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>A5</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

X = Included in LCA; MND = module not declared

Environmental impact:

1m² of Twin-Therm® roof incorporating CA 17 1000L liner (0.23W/m²K U-value)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1 – A3</th>
<th>A4</th>
<th>A5</th>
<th>B1 – B5</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWP</td>
<td>kg CO₂ eq</td>
<td>4.09E+01</td>
<td>4.03E-01</td>
<td>9.91E-01</td>
<td>0.00E+00</td>
<td>2.21E-01</td>
<td>2.31E-01</td>
<td>1.10E-01</td>
<td>2.34E-01</td>
<td>2.34E-01</td>
</tr>
<tr>
<td>ODP</td>
<td>kg CFC11 eq</td>
<td>8.24E-07</td>
<td>7.00E-15</td>
<td>1.80E-10</td>
<td>0.00E+00</td>
<td>3.84E-15</td>
<td>4.00E-15</td>
<td>4.77E-12</td>
<td>5.32E-15</td>
<td>1.17E-08</td>
</tr>
<tr>
<td>AP</td>
<td>kg SO₂ eq</td>
<td>1.14E-01</td>
<td>1.02E-03</td>
<td>7.04E-03</td>
<td>0.00E+00</td>
<td>2.13E-03</td>
<td>5.96E-04</td>
<td>3.27E-04</td>
<td>1.39E-04</td>
<td>3.28E-02</td>
</tr>
<tr>
<td>EP</td>
<td>kg PO₄³⁻ eq</td>
<td>1.10E-02</td>
<td>2.42E-04</td>
<td>1.08E-03</td>
<td>0.00E+00</td>
<td>4.58E-04</td>
<td>1.43E-04</td>
<td>3.12E-05</td>
<td>1.92E-05</td>
<td>2.73E-03</td>
</tr>
<tr>
<td>POCP</td>
<td>kg Ethene eq</td>
<td>1.53E-02</td>
<td>-3.91E-04</td>
<td>7.24E-04</td>
<td>0.00E+00</td>
<td>2.93E-04</td>
<td>-2.31E-04</td>
<td>2.26E-05</td>
<td>1.08E-05</td>
<td>-7.11E-03</td>
</tr>
<tr>
<td>ADPE</td>
<td>kg Sb eq</td>
<td>2.50E-03</td>
<td>6.15E-09</td>
<td>2.41E-05</td>
<td>0.00E+00</td>
<td>3.37E-09</td>
<td>3.52E-09</td>
<td>4.52E-08</td>
<td>9.00E-09</td>
<td>-2.75E-04</td>
</tr>
<tr>
<td>ADPF</td>
<td>MJ</td>
<td>4.73E+02</td>
<td>5.43E+00</td>
<td>1.12E+01</td>
<td>0.00E+00</td>
<td>2.98E+00</td>
<td>3.11E+00</td>
<td>1.58E+00</td>
<td>3.03E-01</td>
<td>-1.62E+02</td>
</tr>
</tbody>
</table>

GWP = Global warming potential

ODP = Depletion potential of stratospheric ozone layer

AP = Acidification potential of land & water

EP = Eutrophication potential

POCP = Formation potential of tropospheric ozone photochemical oxidants

ADPE = Abiotic depletion potential for non-fossil resources

ADPF = Abiotic depletion potential for fossil resources
Resource use:

1m² of Twin-Therm® roof incorporating CA 17 1000L liner (0.23W/m²K U-value)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1 – A3</th>
<th>A4</th>
<th>A5</th>
<th>B1 - B5</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERE</td>
<td>MJ</td>
<td>3.48E+01</td>
<td>1.76E-01</td>
<td>3.57E-01</td>
<td>0.00E+00</td>
<td>9.66E-02</td>
<td>1.01E-01</td>
<td>6.61E-01</td>
<td>3.89E-02</td>
<td>5.39E+00</td>
</tr>
<tr>
<td>PERM</td>
<td>MJ</td>
<td>3.26E+00</td>
<td>0.00E+00</td>
<td>8.53E-01</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>-3.26E-01</td>
<td></td>
</tr>
<tr>
<td>PERT</td>
<td>MJ</td>
<td>3.80E+01</td>
<td>1.76E-01</td>
<td>1.21E+00</td>
<td>0.00E+00</td>
<td>9.66E-02</td>
<td>1.01E-01</td>
<td>6.61E-01</td>
<td>3.89E-02</td>
<td>5.06E+00</td>
</tr>
<tr>
<td>PENRE</td>
<td>MJ</td>
<td>5.24E+02</td>
<td>5.83E+00</td>
<td>1.12E+01</td>
<td>0.00E+00</td>
<td>3.20E+00</td>
<td>3.34E+00</td>
<td>2.44E+00</td>
<td>3.39E-01</td>
<td>-1.65E+02</td>
</tr>
<tr>
<td>PENRM</td>
<td>MJ</td>
<td>1.52E+01</td>
<td>0.00E+00</td>
<td>1.43E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>-1.26E+00</td>
<td></td>
</tr>
<tr>
<td>PENRT</td>
<td>MJ</td>
<td>5.40E+02</td>
<td>5.83E+00</td>
<td>1.26E+01</td>
<td>0.00E+00</td>
<td>3.20E+00</td>
<td>3.34E+00</td>
<td>2.44E+00</td>
<td>3.39E-01</td>
<td>-1.66E+02</td>
</tr>
<tr>
<td>SM</td>
<td>kg</td>
<td>1.54E+00</td>
<td>0.00E+00</td>
<td>-1.15E-01</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>-8.01E+00</td>
<td></td>
</tr>
<tr>
<td>RSF</td>
<td>MJ</td>
<td>2.73E-04</td>
<td>2.70E-03</td>
<td>5.91E-19</td>
<td>0.00E+00</td>
<td>1.48E-03</td>
<td>1.54E-03</td>
<td>4.76E-24</td>
<td>-8.68E-05</td>
<td></td>
</tr>
<tr>
<td>NRSF</td>
<td>MJ</td>
<td>2.62E-03</td>
<td>4.09E-29</td>
<td>7.48E-18</td>
<td>0.00E+00</td>
<td>2.24E-29</td>
<td>2.34E-29</td>
<td>5.60E-23</td>
<td>-7.32E-04</td>
<td></td>
</tr>
<tr>
<td>FW</td>
<td>m³</td>
<td>9.66E-02</td>
<td>5.00E-04</td>
<td>4.88E-03</td>
<td>0.00E+00</td>
<td>2.74E-04</td>
<td>2.86E-04</td>
<td>1.43E-03</td>
<td>-8.08E-02</td>
<td></td>
</tr>
</tbody>
</table>

Output flows and waste categories:

1m² of Twin-Therm® roof incorporating CA 17 1000L liner (0.23W/m²K U-value)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1 – A3</th>
<th>A4</th>
<th>A5</th>
<th>B1 - B5</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWD</td>
<td>kg</td>
<td>3.83E-02</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>-3.83E-03</td>
<td></td>
</tr>
<tr>
<td>NHWD</td>
<td>kg</td>
<td>2.23E+00</td>
<td>0.00E+00</td>
<td>3.93E-02</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>-2.24E-01</td>
<td></td>
</tr>
<tr>
<td>RWD</td>
<td>kg</td>
<td>9.39E-03</td>
<td>5.94E-06</td>
<td>2.07E-04</td>
<td>0.00E+00</td>
<td>3.26E-06</td>
<td>3.40E-06</td>
<td>4.56E-06</td>
<td>-6.30E-04</td>
<td></td>
</tr>
<tr>
<td>CRU</td>
<td>kg</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>1.06E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td></td>
</tr>
<tr>
<td>MFR</td>
<td>kg</td>
<td>7.17E-02</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>9.65E+00</td>
<td>-7.17E-03</td>
<td></td>
</tr>
<tr>
<td>MER</td>
<td>kg</td>
<td>4.57E-03</td>
<td>0.00E+00</td>
<td>6.56E-02</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>-4.56E-04</td>
<td></td>
</tr>
<tr>
<td>EEE</td>
<td>MJ</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td></td>
</tr>
<tr>
<td>EET</td>
<td>MJ</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td></td>
</tr>
</tbody>
</table>

HWD = Hazardous waste disposed
NHWD = Non-hazardous waste disposed
RWD = Radioactive waste disposed
CRU = Components for reuse
MFR = Materials for recycling
MER = Materials for energy recovery
EEE = Exported electrical energy
EET = Exported thermal energy
5 Interpretation of results

Figure 3 shows the relative contribution per life cycle stage for each of the seven environmental impact categories for 1m² of CA Building Products Twin-Therm® roof incorporating CA 17 1000L liner (0.23 W/m²K U-value). Each column represents 100% of the total impact score, which is why all the columns have been set with the same length. A burden is shown as positive (above the 0% axis) and a benefit is shown as negative (below the 0% axis). The main contributors across all impact categories are A1-A3 (burdens) and D (benefits beyond the system boundary).

The manufacture of the cold rolled coil during stage A1-A3 is responsible for between 50% and 75% of each impact in most of the categories, specifically, the conversion of iron ore into liquid steel which is the most energy intensive part of the cladding manufacturing process. The manufacture of the glass wool insulation is also a significant contributor to each environmental impact and is generally responsible for between 20% and 40% of the A1-A3 total. The exceptions to this are in the GWP category, where the insulation contribution is only 7%, and for the Ozone Depletion Potential (ODP) indicator, where the manufacture of the glass wool insulation is responsible for less than 5% of the total. The main contribution to A1-A3 in the ODP category is actually from the manufacture of the paint coating, which represents about 65% of the total impact.

The primary site emissions come from use of coal and coke in the blast and basic oxygen furnaces, as well as combustion of the process gases. These processes, together with the manufacture of the wool insulation, give rise to emissions of CO₂ which contributes 95% of the Global Warming Potential (GWP), and sulphur oxides, which are responsible for over half of the impact in the Acidification Potential (AP) category. In addition, oxides of nitrogen are emitted which contribute around 25% of the A1-A3 Acidification Potential (AP) and Eutrophication Potential (EP), and ammonia, which is also significant. The combined emissions of sulphur and nitrogen oxides, together with emissions of carbon monoxide, methane, and VOCs all contribute to the Photochemical Ozone indication (POCP).

Figure 3 clearly indicates the relatively small contribution to each impact from the other life cycle stages, A4 and A5, and C1 through to C4. Of these stages, the most significant contributions are from stages A4 (transport to construction site), A5 (installation of the product on the building) and C1 (deconstruction at end-of-life), to the Acidification (AP) and Eutrophication (EP) Potentials. This is mainly the result of nitrogen oxides emissions from the combustion of diesel fuel used in road transport (A4) and to power site machinery such as fork lift trucks, scissor lifts and cherry pickers (A5 and C1). The emission of sulphur dioxide also contributes to the acidification potential indicator for A5, with approximately 20% of this impact coming from the manufacture of the stainless steel screws that fix the cladding to the building.

Module D values are largely derived using worldsteel’s value of scrap methodology which is based upon many steel plants worldwide, including both BF/BOF and EAF steel production routes. At end-of-life, the recovered steel cladding is modelled with a credit given as if it were re-melted in an Electric Arc Furnace and substituted by the same amount of steel produced in a Blast Furnace [25]. This contributes a significant reduction to most of the environmental impact category results, with the specific emissions that represent the burden in A1-A3, essentially the same as those responsible for the impact reductions in Module D.

There are a couple of exceptions to this, one of which is highlighted in Figure 3. Instead of the expected benefit in the Module D impact of the ODP indicator, it clearly shows a small positive value or burden. For ODP, the recycling of the steel part of the cladding product at end-of-life results in a relatively large burden when compared with that from the product stage, A1-A3, because the recycling impact is larger than the impact of primary manufacture. The very different energy sources (coal versus grid electricity mix) and technologies (BF/BOS versus EAF) are the main reasons why this is so, and the Module D burden comes from the allocation methodology used in the worldsteel model for calculating the ‘value of scrap’.

Referring to the LCA results, the impact in Module D for the Use of Renewable Primary Energy indicator (PERT) is different to other impact categories, being a burden or load rather than a benefit. Renewable energy consumption is strongly related to the use of electricity, during manufacture, and as the recycling (EAF) process uses significantly more electricity than primary manufacture (BF/BOS), there is a positive value for renewable energy consumption in Module D but a negative value for non-renewable energy consumption.
6 References and product standards

1. Tata Steel’s EN 15804 verified EPD programme, General programme instructions, Version 1.0, January 2017
2. Tata Steel’s EN 15804 verified EPD programme, Product Category Rules Part 1, Version 1.0, January 2017
3. Tata Steel’s EN 15804 verified EPD programme, Product Category Rules Part 2 – Steel Cladding Systems, Version 1.0, July 2018
5. ISO 14025:2010, Environmental labels and declarations - Type III environmental declarations - Principles and procedures
7. EN 15804:2012+A1:2013, Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products
8. Loss Prevention Certification Board (LPCB), LPS 1181-1, External envelope fire performance grade Ext-B
10. EN 14782:2006, Self-supporting metal sheet for roofing, external cladding and internal lining
12. ETA 17/0456, European Technical Assessment 17/0456 for spacer systems
13. ISO 9001:2015, Quality management systems
14. ISO 14001:2015, Environmental management systems
16. EN 10346:2015, Continuously hot-dip coated steel flat products for cold forming
17. REACH, EU regulation for Registration, evaluation, authorisation and restriction of chemicals
18. BS OHSAS 18001, Occupational health and safety management
19. BES 6001, Responsible sourcing of construction products
20. BBA Certification, British Board of Agrément product certification
22. thinkstep; GaBi: Software-System and Database for Life Cycle Engineering. Copyright, TM. Stuttgart, Echterdingen, 1992-2018
http://documentation.gabi-software.com
24. EUROFER in cooperation with the World Steel Association, ‘A methodology to determine the LCI of steel industry co-products’, February 2014
27. CML LCA methodology, Institute of Environmental Sciences (CML), Faculty of Science, University of Leiden, Netherlands